Cotilting with balanced big Cohen-Macaulay modules

نویسندگان

چکیده

Over a $d$-dimensional Cohen-Macaulay local ring admitting canonical module the definable closure of class balanced big modules is $d$-cotilting and smallest such containing maximal modules. We describe its cotilting structure contrast it to largest The enables an implicit classification all classes

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liaison with Cohen–Macaulay modules

We describe some recent work concerning Gorenstein liaison of codimension two subschemes of a projective variety. Applications make use of the algebraic theory of maximal Cohen–Macaulay modules, which we review in an Appendix.

متن کامل

RESULTS ON ALMOST COHEN-MACAULAY MODULES

Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.

متن کامل

Homological Properties of Balanced Cohen-macaulay Algebras

A balanced Cohen-Macaulay algebra is a connected algebra A having a balanced dualizing complex ωA[d] in the sense of Yekutieli (1992) for some integer d and some graded A-A bimodule ωA. We study some homological properties of a balanced Cohen-Macaulay algebra. In particular, we will prove the following theorem: Theorem 0.1. Let A be a Noetherian balanced Cohen-Macaulay algebra, and M a nonzero ...

متن کامل

Indecomposable Cohen-macaulay Modules and Their Multiplicities

The main aim of this paper is to find a large class of rings for which there are indecomposable maximal Cohen-Macaulay modules of arbitrary high multiplicity (or rank in the case of domains).

متن کامل

Sequentially Cohen-macaulay Modules and Local Cohomology

Let I ⊂ R be a graded ideal in the polynomial ring R = K[x1, . . . , xn] where K is a field, and fix a term order <. It has been shown in [17] that the Hilbert functions of the local cohomology modules of R/I are bounded by those of R/ in(I), where in(I) denotes the initial ideal of I with respect to <. In this note we study the question when the local cohomology modules of R/I and R/ in(I) hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2023

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2022.11.019